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Abstract

This paper reports an investigation of serotype-specific differences in heat resistance kinetics of clinical and food isolates of Escherichia

coli. Heat resistance kinetics for 5 serotypes of E. coli at 60 8C were estimated in beef gravy using a submerged coil heating apparatus. The

observed survival curves were sigmoidal and there were significant differences ( p=0.05) of the survival curves among the serotypes.

Consequently, a model was developed that accounted for the sigmoidal shape of the survival curves and the serotype effects. Specifically,

variance components for serotypes and replicates within serotypes were estimated using mixed effect nonlinear modeling. If it is assumed that

the studied serotypes represent a random sample from a population of E. coli strains or serotypes, then, from the derived estimates,

probability intervals of the expected lethality for random selected serotypes can be computed. For example, expected serotype-specific

lethalities at 60 8C for 10 min are estimated to range between 5 and 9 log10 with 95% probability. On the other hand, to obtain a 6-log10
lethality, the expected minutes range, with 95% probability, from 6 to 12 min. The results from this study show that serotypes of E. coli

display a wide range of heat resistance with nonlinear survival curves.

Published by Elsevier Ltd.
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Industrial relevance: This paper is of high current interest since it deals with the ongoing international debate on log linear vs. non-log linear microbial

inactivation curves observed during thermal and non-thermal processing. The data on 5 serotypes of E. coli indicate a clear need for further studies with more

strains to fully characterize the heat resistance kinetics for E. coli.
1. Introduction

Processors use D-values to determine necessary time and

temperature combinations to obtain specified lethalities to

pathogens that might exist in the precooked product.

However, the use of D-values assumes that the survival

curve (log of the number of viable cells versus time) is linear.

The consequence of assuming a D-value when the survival

curve is actually convex is that the degree of safety thought to
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be achieved may not be so. Thus, it is important for

processors to know if survival curves are nonlinear and to

take this into account when designing their processing

systems.

The nonlinearity of a survival curve is not the only factor

that can contribute to designing lethality processes that are

not as safe as thought. Often in predictive microbiology

lethality experiments are performed using cocktails of

different strains, with the purpose of deriving bconservativeQ
estimates of the lethalities that would be obtained for given

temperature and time treatments. However, since the number

of strains in the cocktail is finite, it is possible that the

estimates derived from the cocktail would not be conserva-

tive in some circumstances; there may be other strains not

studied, or not existing at the time, that would be more or less
g Technologies 6 (2005) 155–161
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heat resistant than those studied. Generally when designing

inactivation studies, there is an initial heat resistance

screening of many relevant strains (by determining the

percentage of surviving cells after a fixed period of time at a

given temperature), and the cocktail is made up of the most

heat resistance of these strains. Missing in results of

experiments using cocktails, however, are the estimates of

variability reflecting bbetween strainQ or serotype lethalities.
Estimates of between strain variance of lethalities, however,

would be useful in constructing safer processes by taking

into account the possible variability of the likelihood of cells

surviving when assuming that the studied strains represent

other strains in some population. In particular, statistical

estimates of the range of possibilities (probability intervals)

could be made if estimates of the between strain lethality

variance were available, assuming that the strains studied

represent a random sample of strains for some population

and that the distribution of the underlying serotype-specific

lethalities is normally distributed.

This paper presents results from inactivation experiments

at 60 8C of five different strains of E. coli. From these

results, survival curves are estimated and the between strain,

and between replicate variance components of lethality are

estimated. From these estimates probability intervals of

obtained lethalities are made assuming an underlying

normal distribution.
2. Materials and methods

2.1. Bacterial serotypes

E. coli serotypes isolated from raw processed beef, pork,

chicken and turkey, as well as human clinical isolates, were

used in the study. The information about these serotypes is

given in Table 1. These strains were stored in vials at �70

8C in a mixture (85:15; v/v) of Tryptic Soy Broth (TSB;

Difco Laboratories; Detroit, MI) and glycerol (Sigma

Chemical, St. Louis, MO).

2.2. Preparation of test cultures

To prepare the cultures, vials were partially thawed at

room temperature and 1.0 ml of the culture was transferred to

10 ml of brain heart infusion broth (BHI; Difco) in 50-ml
Table 1

Escherichia coli sources

Serotype/strain Isolate

designation

Source Origin

E. coli

O157:H7

ent9490

(Jack-in-the-box)

CDC 7 Clinical

E. coli

O157:H7

41199-0093 FSIS 9 Deer

pepperoni

E. coli MH98332 FSIS 26 Chicken

E. coli MH99196 FSIS 32 Cattle

E. coli MH98355 FSIS 34 Hog
tubes and incubated for 24 h at 37 8C. This culture was not
used in inactivation experiments as it contained freeze-

damaged cells. Aworking culture for use in the experiments

was prepared by transferring 0.1ml of each culture to 10ml of

BHI and incubating aerobically for 24 h at 37 8C. These
cultures were maintained in BHI for 2 weeks at 4 8C. A new

series of cultures was initiated from the frozen stock on a

biweekly basis.

A day before the experiment, the inocula were prepared by

again transferring 0.1 ml of each refrigerated culture to 10 ml

of BHI, and incubating aerobically for 18 h at 37 8C to

provide late stationary phase cells. On the day of the

experiment, each culture was centrifuged (5000 Hg, 15

min, 4 8C), the pellet was washed twice in 0.1% peptone

water (w/v) and suspended in peptone water to a target level

of 108–109 cfu/ml. The population densities in each cell

suspension were enumerated by spiral plating (Model D;

Spiral Biotech, Bethesda, MD) appropriate dilutions (in 0.1%

peptone water), in duplicate, onto Tryptic soy agar (TSA;

Difco) plates and incubating at 37 8C for 48 h.

2.3. Thermal inactivation procedure

The formulation of the model beef gravy used in the

present study as a heating menstruum was 1.5% protease

peptone, 5.0% beef extract, 0.5% yeast extract and 1.7%

soluble starch (Juneja et al., 1998). All ingredients were

obtained from Difco. The gravy was sterilized by autoclaving

prior to use. Beef gravy (10 ml) was inoculated with 0.1 ml of

the diluted inoculum of selected E. coli isolates to obtain a

final concentration of approximately 107–108 cfu/ml. There-

after, the inoculated gravy suspensions were heated at 60 8C
using a submerged coil heating apparatus (Cole & Jones,

1990). The submerged coil heating apparatus is comprised of

a stainless steel coil fully submerged in a thermostatically-

controlled water bath which allows microbial suspensions to

be heated between 20 and 90 8Cwithin a short time to achieve

a temperature equilibrium. During the heating procedure,

samples (0.2 ml) were removed at predetermined time

intervals from 5 min to 40 min. Since the lower limit of

detection by spiral plating is 21 cfu/ml, 0.6 ml aliquots were

removed when low cell numbers were expected at the last 3–4

sampling times. Samples were cooled rapidly in ice slurry.

2.4. Enumeration of surviving bacteria

Decimal serial dilutions were prepared in peptone water

and appropriate dilutions were surface plated in duplicate on

TSA, supplemented with 0.6% yeast extract and 1% sodium

pyruvate, using a spiral plater. Samples not inoculated with E.

coli were plated as controls. Also, 0.1 and 1.0 ml of undiluted

suspension were surface plated, where relevant. All plates

were incubated at 30 8C for at least 48 h prior to counting

colonies. For each replicate experiment performed in

duplicate, an average cfu/g of four platings of each sampling

point was used in the statistical analysis.
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2.5. Statistical methods

The observed survival curves can be characterized by an

initial shoulder and asymptotically approaching a straight

line or a convex curve, often referred to as btailing.Q While

various reasons have been offered that explain tailing (Cerf,

1977), it is assumed here that this occurs due to cell

heterogeneity. For fitting these types of survival curves, a

function based on the logistic probability distribution has

been used in other papers (Augustin, Carlier, & Rozier,

1998; Carlier, Augustin, & Rozier, 1996; Juneja & Marks,

2003)), with ln(t) as the independent variable to model

inactivation. The function is

ln r tð Þð Þ ¼ � ln 1þ exp aþ bln tð Þð Þð Þ ð1Þ

where r(t)) is the fraction of surviving cells at time t, and a

and bN0 are constants. As t approaches 0 from the right, the

limit of the right side is 0 since it is assumed that bN0, and

as t approaches infinity, the derivative of the function

approaches 0. In other words, asymptotically, the curve

approaches a horizontal line, so that the asymptotic D-value

is zero. To reflect the possibility of asymptotically non-zero

D-values, Eq. (1) can be extended to include the variable

time within the exponential function as:

ln r tð Þð Þ ¼ � ln 1þ exp aþ bln tð Þ þ ctð Þð Þ ð2Þ

where a and bN0 and c a 0 are constants. For this function, as

t approaches infinity, the derivative approaches �c, so that

asymptotically, theD-value is ln(10)/c. Thus, a statistical test

for a non-zero asymptotic D-value is based on whether c is

significantly different from zero. One advantage of Eqs. (1)

and (2) that is not shared by some other functions is that,

through a transformation, the dependent variable can be

expressed as a linear function of the unknown constant

values. Eq. (2) can be transformed to

ln r tð Þ�1 � 1
� �

¼ aþ bln tð Þ þ ct: ð3Þ

Eq. (3) enables linear regressions to be used to evaluate

alternative models and to determine serotype and replicate

variance components.
Table 2

Root-mean-square errors (RMSE) for different models of survival curves for each

Serotype Rep RMSE logit

(2 parameters)

RMSE

(3 para

A 1 0.408 0.172

A 2 0.278 0.300

A 3 0.349 0.331

B 1 0.673 0.690

B 2 0.184 0.195

C 1 0.176 0.121

C 2 0.310 0.334

D 1 0.387 0.405

D 2 0.352 0.380

E 1 0.371 0.244

E 2 0.410 0.358

Pooled RMSE 0.376 0.352
For comparisons to the functions of Eqs. (1) and (2), two

other functions were fitted to the data. The derivation of

these functions is based on the assumptions that, for survival

curves that display tailing, each cell of the population of

cells has an asymptotic linear survival curve, described by

the parameter k, and that the values of k over the population

of cells has distribution F(k|h) (Bazin & Prosser, 1988). A

function (Juneja, Eblen, & Marks, 2001) which has a

shoulder for small times, and then asymptotically converges

to a straight line is

ln p tjk;wð Þð Þ ¼ � kt þ ln 1þ k

w
1� e�wtð Þ

��
ð4Þ

where p(t) is the probability that the cell will be surviving at

time t, and k and w are constants. As t 6 4, the derivative of

ln( p(t)) 6 �k, and as t 6 0+, the derivative ln( p(t)) 6 0 so

that Eq. (4) describes a survival curve with an asymptotic D-

value and curved bshouldersQ with initial slope equal to 0.

Assuming w is constant for all cells, and integrating p(t|k,

w) with respect to F(k), and taking the logarithm, the

survival curve for the population can be described as

ln r tð Þð Þ ¼ ln NF tð Þð Þ þ ln 1� g1 tjhð Þf wð Þð Þ ð5Þ

where /F(t) is the Laplace transform of F, g1(t|h)=/NF(t)/

/F(t), the derivative being taken with respect to t, and

f(w)=(1�e�wt)/w, for wN0, and f(0)=t. This model is

referred to as the nonlinear 1-stage full model. The fourth

model considered is the nonlinear spline function:

ln p tð Þð Þ ¼ � bmin t; t0ð Þ � ln /F t � t0ð Þþ
� ��

ð6Þ

where the notation, x+=max(x, 0) and b, t0 are values of

parameters to be estimated. Bazin and Prosser (1988)

suggest, or provide examples of, two distributions for F: a

normal distribution, so that ln(lF(t))=�:t+(mt)2/2, where : is
the mean and m is the standard deviation of F; and a gamma

distribution, so that ln(lF(t))=�(:/m)2 ln(1+m2t/:), where

again : is the mean and m is the standard deviation of F.

However, for large t the normal distribution implies an

increasing survival curve, which we assume is not possible.

Thus, the gamma distribution is assumed in this paper.
replicate and serotype

logit

meters)

RMSE one stage

(3 parameters)

RMSE spline gamma

(4 parameters)

0.128 0.172

0.354 0.394

0.299 0.327

0.703 0.684

0.483 0.222

0.656 0.112

0.564 0.342

0.459 0.313

0.905 0.535

0.617 0.130

0.337 0.089

0.542 0.350
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For determining the values of the parameters of the

nonlinear regression, for each serotype and replicate,

ordinary least squares (OLS) nonlinear regression routines

were used from SASR-PC release 8.00, PROC NLIN. For

computing root-mean-square errors (RMSE) for the models,

the sum of squares of the residuals was divided by n�1�p,

where n is the number of data observations, p is the number

of parameters in the model, and the �1 reflects that the

origin (time=0) was not used in the regression.

Nonlinear and linear mixed effects models were fit to

determine variance components associated with the serotype

and replicate effects. These analyses were performed on S-

plus -6.0, professional, release 1, using the nonlinear mixed

effects procedure, and PC-SAS, using the PROC MIXED

procedure (Pinheiro & Bates, 2000). However, the idea of

these types of analyses is to determine the variance

components associated with the parameters of the model

that arise due to the correlations that exists among the

observations of experiments. In our case, correlations exist

because the results are either within the same experiment

(replicate) or of the same serotype. Hence the variance

structure is nested, consisting of two levels of variance

components: (1) serotype, and (2) the replicate within

serotype. So, if 8 is a random parameter, then it is assumed

that 8 has an expected value, :, over some population of

serotypes and a standard deviation, US, reflecting the

between serotype variability. Furthermore, over a series of

experiments for a given serotype, there would be a standard

deviation, Ue of the observed or measured results of 8.
Hence, for a (infinite) series of measured values, aj, of 8,
where for each experiment a randomly chosen serotype is

used, the expected mean value of the value of aj’s is :, and

the expected variance of the aj’s is, US
2+Ue

2. The notion is

extended for more than one parameter, where it is assumed
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Fig. 1. Residuals: observed minus predicted log10 relative reduction obtained from

of E. coli., versus the observed log10 relative reduction. Symbols represent the d
that the parameters’ values are correlated. To clarify the

nomenclature: when there is no random component for a

parameter, the parameter is referred to as a fixed parameter;

otherwise the parameter is a random parameter. A random

parameter induces more (fixed) parameters because of the

associated variance components and correlations. Thus,

even a small number of random parameters that are initially

designated in a model can result in a rather large number of

fixed parameters that need to be considered. For example, if

there are three random parameters, then, for the variance

structure described above, there are a total of 15 fixed

parameters: 3 associated with the expected values; plus 12

associated with the variances and covariances for the two

levels of variance components. When all possible fixed

parameters are included in a model, then the model is

referred to as being full. Because of the large number of

fixed parameters, convergence is (often) not obtained,

particularly when there are small numbers of serotypes

and replicates. Thus simplifying assumptions are made with

the goal of reducing the number of parameters that are

needed to describe the model well.

To determine a model that incorporates serotype and

replicate variance components various choices of independ-

ent variables and assumed variance structure are tried with

the goal of finding a set which provides a relatively good fit,

using the likelihood ratio test. For example, for determining

if p added fixed parameters to the model improve the fit

significantly, the likelihood ratio test statistic (the change of

�2 log-likelihood when adding the parameters) is compared

to the percentiles of the chi-square distribution with p

degree of freedom. For example, if p=1, if the likelihood

ratio test statistic is greater than 6.64, then the added term is

significant at the 0.01 level. Besides the likelihood ratio test,

an examination of the pattern of residuals and the
-4 -3 -2 -1 0

e reduction

A
B
C
D
E

nonlinear regressions of Eq. (2) for each experiment at 60 8C for 5 serotypes

ifferent serotypes studied.



Table 4

Nonlinear models (Eq. (2)) and log-likelihood values
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significance of the values of the estimated values of the

parameters are also considered.

Variance components Number of

Serotype Replicate Parameters Log-likelihood

1 (a, b, c) (a, c) 13 �59.72

2 (a, b) (a, c) 10 �60.74a

3 (a, b) (b, c) 10 �62.99

4 (b) (a, b, c) 11 �60.95

5 (a, b; corr=0) (a, c) 9 �61.22

6 (b) (a, c) 8 �61.23a

7 ( ) (a, c) 7 �135.65

a P-value for testing significance of model with more parameters=0.61.
3. Results and discussion

Following usual practice, the above equations were

transformed to log10 units. The regressions were performed

with the log10 of the ratio of the observed levels (cfu/ml) to

the levels at time 0 as the dependent variable. Table 2

presents the root-mean-square errors (RMSE) for the 4

different nonlinear regression models discussed above: the

logistic with 2 parameters (Eq. (1)); the logistic with 3

parameters (Eq. (2)); 1-stage full model, using the gamma

function (Eq. (5)) and the spline function (Eq. (6)). The 3

parameter–logistic and the spline functions had the lowest

pooled root-mean-square errors of about 0.35 log10. Because

the logistic function with 3 parameters provides good fits to

the observed observations, as well as the spline function that

uses 4 parameters, the logistic function (Eq. (2)) is used to

further develop a model of inactivation for E. coli at 60 8C.
Fig. 1 is a plot of the residuals from the nonlinear

regressions of Eq. (2) versus the observed log10 relative

reductions. There are not significant patterns of residuals in

this figure; for the most part, the spread of the residuals is

nearly homogeneous. The standard deviation of the resid-

uals is 0.284 and the Shapiro–Wilks test for normality had a

p-value of 0.65. For comparison, the standard deviation for

the residual using the nonlinear regression of Eq. (1) is

0.324, which is, as expected slightly larger, and the

Shapiro–Wilks test for normality had a p-value of 0.13,

primarily due to an asymmetric distribution of the residuals.

Table 3 provides further detail of the estimated values of

the parameters of Eq. (2). This table presents the estimated

values of a, b, and c, the asymptotic D-values, the log10 of

the asymptotic D-values, the standard error of the asymp-

totic D-values, and the one-sided significance value for

testing cN0. For all but two of the 11 regressions, the

estimated value of c is positive and most of these are

significant at better than the 0.10 one-sided level. However,
Table 3

Estimated parameter values for logistic regression: log10(r(t))=�log10(1+e
a+b ln(t)+

Serotype Rep a b c Asymptotic D-va

(min)

A 1 1.09 2.07 0.96 2.39

A 2 �1.83 4.99 0.48 4.75

A 3 0.70 4.71 0.45 5.15

B 1 0.46 5.10 0.83 2.79

B 2 �1.89 7.89 0.21 11.16

C 1 �6.62 0.62 1.79 1.29

C 2 �10.58 11.25 0.00

D 1 �4.82 7.91 0.48 4.79

D 2 �17.25 15.23 0.00 –

E 1 �5.63 0.00 1.98 1.16

E 2 �2.40 3.05 0.84 2.75

Also included is the estimated asymptotic D-value, standard error of this, and the
as is evident, there is a great amount of variability among

the results of the individual experiments.

One of the objectives of this paper is to determine the

variance components associated with the values of the heat

inactivation parameters. To designate mixed effect models

that were tried the following notation is used: if x is a

random parameter assumed to have variance component at

level s, then s will be designated as a function of x, s(x). For

example, a model that assumed that b varies by serotype,

and a and c vary by replicate within serotype, would be

designated as Serotype(b) and Rep(a, c).

Mixed effect regressions were performed, using Eq. (2)

for various assumed variance matrices. Convergence was

not obtained for the full models (assuming the possibility of

all possible non-zero correlations) for both linear and

nonlinear models. The models overestimated the lethalities

obtained for the shortest time (=1 min) greater than zero for

which measurements were made. While most of the

observed lethalities at this time were small, averaging about

0.5 log10, and all were less than about 1 log10, the fitted

curves were flat for small times, resulting in negative

residuals. Since the predictions are desired for larger

lethalities, these data points were deleted from the subse-

quent analysis. Thus, the developed model applies for times

greater than 1 min. Table 4 gives a list of some of the

models that were analyzed. In the table, the number of

parameters and the log-likelihood values are provided.

Other models not shown had associated lower likelihood
ct), where r(t) is the relative reduction of viable E. coli at time t

lue Log10 asymptotic

D-value

Standard error

asym. D-value

One-sided P-value

for cN0

0.38 0.42 0.002

0.68 4.26 0.163

0.71 3.47 0.090

0.45 2.32 0.142

1.05 16.95 0.270

0.11 0.30 0.003

0.00

0.68 6.65 0.249

– 0.00 –

0.06 0.06 0.000

0.44 0.86 0.008

one-sided significant value for cN0.



V.K. Juneja, H.M. Marks / Innovative Food Science and Emerging Technologies 6 (2005) 155–161160
values (more negative) or did not show improvement versus

the ones shown. The best model shown in this table has the

between serotype variance components being a function of

the variable b: Serotype(b), Rep(a,c). The estimated values,

with standard errors in parentheses, of the fixed parameters

for that model are: E(a)=�4.41 (1.30); E(b)=5.94 (0.95);

E(c)=0.679 (0.178). The standard deviation of the residuals

is 0.34. From the expected value of c, the expected

asymptotic D-value is estimated as: ln(10)/E(c)=3.39

(0.89) min. The estimated standard deviation, S.D., for the

between serotype level is S.D.(b)=0.984, and for the

between replicate level, the standard deviations of a and c

and the correlation between them are: S.D.(a)=3.75,

cor(a,c)=�0.974, S.D.(c)=0.303.

Fig. 2 presents the fitted survival curve, using the above

model, together with curves surrounding the fitted curves

giving various probability intervals of expected lethalities.

To explain the curves imagine an experiment consisting of

an infinite number of trials where for each trial a serotype is

chosen at random from a large (but possible finite)

population of serotypes and a survival curve for that trial

is determined (with virtually no error). For each serotype,

an average curve is obtained, which is referred to as the

serotype-specific average survival curve. The fitted curve

represents an estimate of the average of all the trial-specific

survival curves, or the average of all the serotype-specific

average survival curves; the two curves that are closest to

the fitted curve represent estimates of the boundaries of a

region for which 95% of the serotype-specific average

curves fall within; the outer most two curves represent a
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Fig. 2. Fitted survival curve (center curve) using mixed effect nonlinear model. Th

and lower boundaries for which 95% of the serotype-specific survival curves wou

and lower boundaries for which 95% of the trial or experimental-specific surviv

reductions.
region for which 95% of the trial-specific survival curves

fall within. For example, to obtain a 6-log10 lethality, the

expected serotype-specific minutes range, with 95% prob-

ability, from 6 to 12.2 min. On the other hand the expected

serotype-specific lethality at 60 8C for 10 min is estimated

to range between about 5 and 8.9 log10 with 95%

probability. A referee mentioned a recent paper (Whiting

& Golden, 2002) that reported D-values for 17 strains of E.

coli O157:H7 cooked in brain heart infusion broth at 60 8C
(as well as 55 8C). Using the estimated D-values at 60 8C,
estimated lethalities for 10 min of cooking ranged from 4.7

log10 to 14.5 log10. The length of this range is larger than

that of the 95% probability interval given above. Differ-

ences in the study designs (broth and strains studied) of the

two papers and inherent statistical variation certainly can

contribute to the differences of estimated lethalities from the

two papers. In addition, though, these differences, in part,

could be due to features of the model used: (1) the reported

range of the 17 strains includes the effect of within-strain,

between-replicate variability, while the 95% probability

interval estimated from the model of this paper, theoret-

ically, does not; (2) some of the survival curves for the 17

strains could be convex for large times, for which lethality

predictions, based on estimated D-values, which do not

account for the convexity, would overestimate the actual

lethality; (3) some of the survival curves for the 17 strains

could have had shoulders and very little, or no, convexity

for large time, for which lethality predictions, based on

estimated D-values that do not account for the shoulder

would underestimate the actual lethality. In support of the
8 9 10 11 12 13 14

(min)

A
B
C
D
E

e two curves closest to the center curve (- - -) represents the estimated upper

ld fall within; the two outer curves (. . .) represent the estimates of the upper

al curves would fall within. Also included are the observed log10 relative
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second in the above list of possible reasons, convex shaped

graphs of observed survival curves for 6 E. coli O157:H7

strains heated at 52 8C and 57 8C were shown in a paper

(Benito, Ventoura, Casedei, Robinson, & Mackey, 1999)

also suggested to us for consideration by a referee.
4. Conclusion

Estimates of survival curves at 60 8C for 5 serotypes of

E. coli were examined. The estimated survival curves

were sigmoidally shaped, but tending, asymptotically, to a

nonzero D-value. In support of this result, in another

paper (Benito et al., 1999) convex shaped survival curves

were displayed. In addition, the estimated survival curves

for the different serotypes were significantly different.

Within the paper an expected survival curve was derived

together with between serotype variance components of

parameter values used for describing the survival curves. The

function used to describe the survival curve is based on the

logistic function: �log10 (1+exp(a+bln(t)+ct), where t is

time, and a, b, and c are parameters. The asymptoticD-value

is ln(10)/c. From the estimates, probability regions describ-

ing the range of expected serotype-specific survival curves

can be computed. A 95% probability interval for the time

needed to obtain a 6-log10 lethality at 60 8C was estimated at

6 to 12 min. In other words, it was estimated that, for 2.5% of

the E. coli serotypes, more than 12 min is needed to obtain an

expected 6 log10 lethality. The results of the study, based on 5

stereotypes of E. coli, indicate that nonlinearity and potential

significance between serotype variations in heat resistance

exist for E. coli. Consequently additional study with more

strains is needed to fully characterize the heat resistance

kinetics for E coli.
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